Ordered Logit
$$
\begin{aligned}
& R_i \sim Categorical(
\begin{bmatrix}
\Pr(R = 1) \\
\Pr(R = 2) \\
\Pr(R = 3) \\
\Pr(R = 4)
\end{bmatrix}
)\\
& Pr(R_i = 4) = Pr(R_i \le 4) - Pr(R_i \le 3) \\
& Pr(R_i = 3) = Pr(R_i \le 3) - Pr(R_i \le 2) \\
& Pr(R_i = 2) = Pr(R_i \le 2) - Pr(R_i \le 1) \\
& Pr(R_i = 1) = Pr(R_i \le 1) \\
\\
& logit[ Pr(R_i \le 4) ] = logit(1) = \infty \\
& logit[ Pr(R_i \le 3) ] = log \frac{Pr(R_i \le 3)}{1 - Pr(R_i \le 3)} = \kappa_3 - \phi_i \\
& logit[ Pr(R_i \le 2) ] = log \frac{Pr(R_i \le 2)}{1 - Pr(R_i \le 2)} = \kappa_2 - \phi_i \\
& logit[ Pr(R_i \le 1) ] = logit[ Pr(R_i = 1) ] = log \frac{Pr(R_i = 1)}{1 - Pr(R_i = 1)} = \kappa_1 - \phi_i \\
\\
&\text{ or succintly as } \\
& logit( P_c ) = \kappa_c - \phi_i ~, \\
& ~~~ \text{where } P_c = Pr(R_i \le c) \text{, cutpoint } c = 1, 2, 3
\end{aligned}
$$